Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Neurobiol Dis ; 180: 106091, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967065

RESUMO

In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.


Assuntos
Doença de Huntington , Camundongos , Animais , Camundongos Transgênicos , Doença de Huntington/genética , Leucócitos Mononucleares/metabolismo , Modelos Animais de Doenças , Fenótipo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
5.
J Huntingtons Dis ; 8(2): 145-159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814364

RESUMO

BACKGROUND: Cell or tissue specific background may influence the consequences of expressing the Huntington's disease (HD) mutation. Aggregate formation is known to occur in skeletal muscle, but not heart of the R6/2 fragment HD model. OBJECTIVE: We asked whether aggregate formation and the expression and subcellular localization of huntingtin species was associated with mitochondrial dysfunction. METHODS: We analyzed levels of soluble HTT and HTT aggregates, as well as important fission and fusion proteins and mitochondrial respiratory chain activities, in quadriceps and heart of the R6/2 N-terminal fragment mouse model (12 weeks, 160±10 CAG repeats). RESULTS: Soluble mutant HTT was present in both tissues with expression higher in cytoplasmic/mitochondrial than nuclear fractions. HTT aggregates were only detectable in R6/2 quadriceps, in association with increased levels of the pro-fission factor DRP1 and its phosphorylated active form, and decreased levels of the pro-fusion factor MFN2. In addition, respiratory chain complex activities were decreased. In heart that was without detectable HTT aggregates, we found no evidence for mitochondrial dysfunction. CONCLUSION: Tissue specific factors may exist that protect the R6/2 heart from HTT aggregate formation and mitochondrial pathology.


Assuntos
Proteína Huntingtina , Mitocôndrias/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , Animais , Doença de Huntington/patologia , Camundongos
6.
Front Aging Neurosci ; 10: 409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618716

RESUMO

Background: Blood biomarkers may aid in recruitment to clinical trials of Alzheimer's disease (AD) modifying therapeutics by triaging potential trials participants for amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) Aß and tau tests. Objective: To discover a plasma proteomic signature associated with CSF and PET measures of AD pathology. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics were performed in plasma from participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, recruited to the Amsterdam Dementia Cohort, stratified by CSF Tau/Aß42 (n = 50). Technical replication and independent validation were performed by immunoassay in plasma from SCD, MCI, and AD participants recruited to the Amsterdam Dementia Cohort with CSF measures (n = 100), MCI participants enrolled in the GE067-005 study with [18F]-Flutemetamol PET amyloid measures (n = 173), and AD, MCI and cognitively healthy participants from the EMIF 500 study with CSF Aß42 measurements (n = 494). Results: 25 discovery proteins were nominally associated with CSF Tau/Aß42 (P < 0.05) with associations of ficolin-2 (FCN2), apolipoprotein C-IV and fibrinogen ß chain confirmed by immunoassay (P < 0.05). In the GE067-005 cohort, FCN2 was nominally associated with PET amyloid (P < 0.05) replicating the association with CSF Tau/Aß42. There were nominally significant associations of complement component 3 with PET amyloid, and apolipoprotein(a), apolipoprotein A-I, ceruloplasmin, and PPY with MCI conversion to AD (all P < 0.05). In the EMIF 500 cohort FCN2 was trending toward a significant relationship with CSF Aß42 (P ≈ 0.05), while both A1AT and clusterin were nominally significantly associated with CSF Aß42 (both P < 0.05). Conclusion: Associations of plasma proteins with multiple measures of AD pathology and progression are demonstrated. To our knowledge this is the first study to report an association of FCN2 with AD pathology. Further testing of the proteins in larger independent cohorts will be important.

8.
J Alzheimers Dis ; 52(2): 561-72, 2016 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-27031486

RESUMO

Increasingly, clinical trials for Alzheimer's disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aß measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p <  0.05). Five of these proteins also correlated with brain amyloid measures at different stages of the disease (q <  0.1). Here we show that it is possible to detect a plasma based biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature.


Assuntos
Doença de Alzheimer/sangue , Proteínas Amiloidogênicas/análise , Benzotiazóis/análise , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Compostos de Anilina , Biomarcadores/sangue , Encéfalo/patologia , Química Encefálica , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Espectrometria de Massas em Tandem , Tiazóis , alfa-Macroglobulinas/análise
10.
J Proteome Res ; 14(12): 5063-76, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26488311

RESUMO

Specific glycosylated peptides of clusterin are found associated with hippocampal atrophy. The glycosylation of clusterin from human plasma was comprehensively analyzed and characterized using mass spectrometry (MS)-based glycoproteomics analysis. All six known N-glycosylation sites are covered, three in the alpha subunit (α64N, α81N and α123N) and three in the beta subunit (ß64N, ß127N, and ß147N). More detailed structural characterization of clusterin glycopeptides was also performed, demonstrating the presence of glycosylated peptides and their corresponding glycans. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we have determined the differences in the glycoforms associated at each of the different glycosylation sites in plasma clusterin obtained from subjects of low hippocampal atrophy (n = 13) and high hippocampal atrophy (n = 14). In our pilot study, the ß64N site shows the most significant regulations between clinical groups. Eight ß64N glycoforms are significantly reduced in patients with high atrophy compared with those with low atrophy, which demonstrates the utility of clusterin isoforms as diagnostic and prognostic Alzheimer's disease (AD) markers. These results provide a novel and robust workflow suitable for rapid verification of specific clusterin glycoforms with utility as AD biomarkers.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Clusterina/sangue , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Atrofia/sangue , Biomarcadores/metabolismo , Clusterina/metabolismo , Transtornos Cognitivos/sangue , Feminino , Glicosilação , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Projetos Piloto , Espectrometria de Massas em Tandem
11.
J Alzheimers Dis ; 46(4): 947-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881911

RESUMO

BACKGROUND: Four previously reported studies have tested for association of blood proteins with neocortical amyloid-ß burden (NAB). If shown to be robust, these proteins could have utility as a blood test for enrichment in clinical trials of Alzheimer's disease (AD) therapeutics. OBJECTIVE: This study aimed to investigate whether previously identified blood proteins also show evidence for association with NAB in serum samples from the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL). The study considers candidate proteins seen in cohorts other than AIBL and candidates previously discovered in the AIBL cohort. METHODS: Our study used the SOMAscan platform for protein quantification in blood serum. Linear and logistic regressions were used to model continuous NAB and dichotomized NAB respectively using single proteins as a predictor. Multiple protein models were built using stepwise regression techniques and support vectors machines. Age and APOEɛ4 carriage were used as covariates for all analysis. RESULTS: Of the 41 proteins previously reported, 15 AIBL candidates and 20 non-AIBL candidates were available for testing. Of these candidates, pancreatic polypeptide (PPY) and IgM showed a significant association with NAB. Notably, IgM was found to associate with continuous NAB across cognitively normal control subjects. CONCLUSIONS: We have further demonstrated the association of PPY and IgM with NAB, despite technical differences between studies. There are several reasons for a lack of significance for the other candidates including platform differences and the use of serum rather than plasma samples. To investigate the possibility of technical differences causing lack of replication, further studies are required.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas Sanguíneas/metabolismo , Neocórtex/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/sangue , Envelhecimento/patologia , Compostos de Anilina/metabolismo , Apolipoproteínas E/genética , Austrália , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas , Proteômica , Tiazóis/metabolismo
12.
Alzheimers Dement ; 11(5): 549-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25282381

RESUMO

The lack of readily available biomarkers is a significant hindrance toward progressing to effective therapeutic and preventative strategies for Alzheimer's disease (AD). Blood-based biomarkers have potential to overcome access and cost barriers and greatly facilitate advanced neuroimaging and cerebrospinal fluid biomarker approaches. Despite the fact that preanalytical processing is the largest source of variability in laboratory testing, there are no currently available standardized preanalytical guidelines. The current international working group provides the initial starting point for such guidelines for standardized operating procedures (SOPs). It is anticipated that these guidelines will be updated as additional research findings become available. The statement provides (1) a synopsis of selected preanalytical methods utilized in many international AD cohort studies, (2) initial draft guidelines/SOPs for preanalytical methods, and (3) a list of required methodological information and protocols to be made available for publications in the field to foster cross-validation across cohorts and laboratories.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Guias como Assunto/normas , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos
13.
Alzheimers Dement (Amst) ; 1(1): 48-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27239491

RESUMO

BACKGROUND: Measures of neocortical amyloid burden (NAB) identify individuals who are at substantially greater risk of developing Alzheimer's disease (AD). Blood-based biomarkers predicting NAB would have great utility for the enrichment of AD clinical trials, including large-scale prevention trials. METHODS: Nontargeted proteomic discovery was applied to 78 subjects from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing with a range of NAB values. Technical and independent replications were performed by immunoassay. RESULTS: Seventeen discovery candidates were selected for technical replication. α2-Macroglobulin, fibrinogen γ-chain (FGG), and complement factor H-related protein 1 were confirmed to be associated with NAB. In an independent cohort, FGG plasma levels combined with age predicted NAB had a sensitivity of 59% and specificity of 78%. CONCLUSION: A single blood protein, FGG, combined with age, was shown to relate to NAB and therefore could have potential for enrichment of clinical trial populations.

14.
Alzheimers Dement ; 10(6): 799-807.e2, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25012867

RESUMO

BACKGROUND: The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. METHODS: Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. RESULTS: Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). CONCLUSIONS: We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints.


Assuntos
Proteínas Sanguíneas/metabolismo , Demência/sangue , Demência/diagnóstico , Sintomas Prodrômicos , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Imunoensaio , Imageamento por Ressonância Magnética , Masculino , Entrevista Psiquiátrica Padronizada , Valor Preditivo dos Testes , Curva ROC , Estatística como Assunto
15.
Alzheimers Dement ; 10(1): 115-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23850333

RESUMO

Treatment of Alzheimer's disease (AD) is significantly hampered by the lack of easily accessible biomarkers that can detect disease presence and predict disease risk reliably. Fluid biomarkers of AD currently provide indications of disease stage; however, they are not robust predictors of disease progression or treatment response, and most are measured in cerebrospinal fluid, which limits their applicability. With these aspects in mind, the aim of this article is to underscore the concerted efforts of the Blood-Based Biomarker Interest Group, an international working group of experts in the field. The points addressed include: (1) the major challenges in the development of blood-based biomarkers of AD, including patient heterogeneity, inclusion of the "right" control population, and the blood-brain barrier; (2) the need for a clear definition of the purpose of the individual markers (e.g., prognostic, diagnostic, or monitoring therapeutic efficacy); (3) a critical evaluation of the ongoing biomarker approaches; and (4) highlighting the need for standardization of preanalytical variables and analytical methodologies used by the field.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Progressão da Doença , Humanos
16.
J Alzheimers Dis ; 38(3): 515-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24121966

RESUMO

A blood-based protein biomarker, or set of protein biomarkers, that could predict onset and progression of Alzheimer's disease (AD) would have great utility; potentially clinically, but also for clinical trials and especially in the selection of subjects for preventative trials. We reviewed a comprehensive list of 21 published discovery or panel-based (> 100 proteins) blood proteomics studies of AD, which had identified a total of 163 candidate biomarkers. Few putative blood-based protein biomarkers replicate in independent studies but we found that some proteins do appear in multiple studies; for example, four candidate biomarkers are found to associate with AD-related phenotypes in five independent research cohorts in these 21 studies: α-1-antitrypsin, α-2-macroglobulin, apolipoprotein E, and complement C3. Using SomaLogic's SOMAscan proteomics technology, we were able to conduct a large-scale replication study for 94 of the 163 candidate biomarkers from these 21 published studies in plasma samples from 677 subjects from the AddNeuroMed (ANM) and the Alzheimer's Research UK/Maudsley BRC Dementia Case Registry at King's Health Partners (ARUK/DCR) research cohorts. Nine of the 94 previously reported candidates were found to associate with AD-related phenotypes (False Discovery Rate (FDR) q-value < 0.1). These proteins show sufficient replication to be considered for further investigation as a biomarker set. Overall, we show that there are some signs of a replicable signal in the range of proteins identified in previous studies and we are able to further replicate some of these. This suggests that AD pathology does affect the blood proteome with some consistency.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Progressão da Doença , Humanos , Proteoma
17.
Biomark Med ; 6(4): 441-54, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22917146

RESUMO

Alzheimer's disease is a complex age-dependent neurodegenerative disease where definitive diagnosis is only possible after autopsy and where there is a long prodromal or preclinical phase. Biomarkers for both early diagnosis and prediction of disease progression are needed and extensive efforts to discover them have been undertaken. In this article, we have attempted to summarize the findings of current studies using proteomics and metabolomics approaches. We are also discussing how the use of emerging technologies and better study designs can support the identification of the much-needed Alzheimer's disease plasma biomarkers.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/sangue , Humanos , Metabolômica , Fragmentos de Peptídeos/sangue , Proteômica , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA